Summary: For those of you not glued to your computer for the past couple hours, you may have missed the new announcement from the LIGO experiment. They have officially announced the discovery of a second gravitational wave detection. That's right, it is no longer a single event in the dark. We have two confirmed black hole mergers that created gravitational waves and another "trigger" event that may prove to be an additional gravitational wave source after a few more tests are performed. There's only an 85% chance of the signal being astrophysically significant right now and that is not good enough for the team at LIGO.
I for one am ecstatic about this announcement. Not only does it herald in a new field of astronomy, but the presentation of data so far has been very easy to understand. Great graphics and explanations.
To give a brief outline of how they conduct their science, it starts with an interferometer. Light travels down two paths of equal length before recombining at a photodetector that measures how much light is hitting the sensor. If the paths are truly equal in length, the light from the different paths will cancel each other out and it will be dark. Any little alteration in the length will cause light to be detected. The gravitational waves actually move space itself like a ripple in a still pond so as the wave flies through Earth, the different paths the light travels at will briefly be different.
The first signal in September was unexpectedly loud so it was able to be seen with human eyes, but this new one from December (Christmas in the US!) was harder to spot. They needed the computer to match the signal to a template in order to see it. It works like a child taking a circular puzzle piece and trying all of the different shaped slots until they finally are able to fit it into the corresponding circular depression on the board.
We can only imagine how much great work will still be coming out of this observatory in the future. This is not yet running at full potential and when the second run starts this autumn it will be more sensitive still. I'll be sure to keep you updated.
LIGO
Video of event
Also, if you are interested in helping LIGO look for more gravitational waves, check out GravitySpy.org
A blog that aims to bring the cool study of antimatter (and other awesome science news) down to an understandable level.
Showing posts with label gravitational waves. Show all posts
Showing posts with label gravitational waves. Show all posts
Wednesday, June 15, 2016
Thursday, February 11, 2016
Double Black Hole Hails Discovery of Gravity Waves
Summary: It's the announcement of a discovery you didn't know you were waiting for. The detection of gravitational waves. It sounds weird, of course, but Einstein was onto something big when he was working on his theory of general relativity. Similar to a ball warping the surface of a rubber sheet, or a kayak being thrown into the water, large objects in outer space warp the fabric of the four dimensional spacetime that we live in.
When this happens, gravitational waves ripple through space and expand or contract the space around them. These waves have been undetectable until now. It is thanks to the LIGO interferometer that we can detect these faint waves in the universe. These waves are understandably hard to detect, the measurements are on a scale less than a width of an atom. They were able to detect this thanks to a double black hole.
Quite deservedly, the scientists involved are quite proud of their work. As this is both the first detection of gravity waves and the first direct detection of a black hole in addition to being confirmation of general relativity, they are confident that there is a Nobel Prize in their future and I am inclined to agree.
Either way, it is an exciting breakthrough in astronomy and one that I am excited to have as I enter the field.
APS Article
BBC News
Nature
SciShow
When this happens, gravitational waves ripple through space and expand or contract the space around them. These waves have been undetectable until now. It is thanks to the LIGO interferometer that we can detect these faint waves in the universe. These waves are understandably hard to detect, the measurements are on a scale less than a width of an atom. They were able to detect this thanks to a double black hole.
Quite deservedly, the scientists involved are quite proud of their work. As this is both the first detection of gravity waves and the first direct detection of a black hole in addition to being confirmation of general relativity, they are confident that there is a Nobel Prize in their future and I am inclined to agree.
Either way, it is an exciting breakthrough in astronomy and one that I am excited to have as I enter the field.
APS Article
BBC News
Nature
SciShow
Subscribe to:
Posts (Atom)